Skip to main content

Bonding ( Port Trunking)

http://www.linuxhorizon.ro/bonding.html

What is bonding?
Bonding is the same as port trunking. In the following I will use the word bonding because practically we will bond interfaces as one.
But still...what is bonding?
Bonding allows you to aggregate multiple ports into a single group, effectively combining the bandwidth into a single connection. Bonding also allows you to create multi-gigabit pipes to transport traffic through the highest traffic areas of your network. For example, you can aggregate three megabits ports (1 mb each) into a three-megabits trunk port. That is equivalent with having one interface with three megabits speed.
Where should I use bonding?
You can use it wherever you need redundant links, fault tolerance or load balancing networks. It is the best way to have a high availability network segment. A very useful way to use bonding is to use it in connection with 802.1q VLAN support (your network equipment must have 802.1q protocol implemented).
The best documentation is on the Linux Channel Bonding Project page
I strongly recommend to read it for more details.
Credits: Linux Channel Bonding Project page , Thea
This small howto will try to cover the most used bonding types. The following script (the gray area) will configure a bond interface (bond0) using two ethernet interface (eth0 and eth1). You can place it onto your on file and run it at boot time..
#!/bin/bash

modprobe bonding mode=0 miimon=100 # load bonding module

ifconfig eth0 down # putting down the eth0 interface
ifconfig eth1 down # putting down the eth1 interface

ifconfig bond0 hw ether 00:11:22:33:44:55 # changing the MAC address of the bond0 interface
ifconfig bond0 192.168.55.55 up # to set ethX interfaces as slave the bond0 must have an ip.

ifenslave bond0 eth0 # putting the eth0 interface in the slave mod for bond0
ifenslave bond0 eth1 # putting the eth1 interface in the slave mod for bond0
You can set up your bond interface according to your needs. Changing one parameters (mode=X) you can have the following bonding types:
mode=0 (balance-rr)
Round-robin policy: Transmit packets in sequential order from the first available slave through the last. This mode provides load balancing and fault tolerance.

mode=1 (active-backup)
Active-backup policy: Only one slave in the bond is active. A different slave becomes active if, and only if, the active slave fails. The bond's MAC address is externally visible on only one port (network adapter) to avoid confusing the switch. This mode provides fault tolerance. The primary option affects the behavior of this mode.

mode=2 (balance-xor)
XOR policy: Transmit based on [(source MAC address XOR'd with destination MAC address) modulo slave count]. This selects the same slave for each destination MAC address. This mode provides load balancing and fault tolerance.

mode=3 (broadcast)
Broadcast policy: transmits everything on all slave interfaces. This mode provides fault tolerance.

mode=4 (802.3ad)
IEEE 802.3ad Dynamic link aggregation. Creates aggregation groups that share the same speed and duplex settings. Utilizes all slaves in the active aggregator according to the 802.3ad specification.
 Pre-requisites:
 1. Ethtool support in the base drivers for retrieving
 the speed and duplex of each slave.
 2. A switch that supports IEEE 802.3ad Dynamic link
 aggregation.
 Most switches will require some type of configuration
 to enable 802.3ad mode.
mode=5 (balance-tlb)
Adaptive transmit load balancing: channel bonding that does not require any special switch support. The outgoing traffic is distributed according to the current load (computed relative to the speed) on each slave. Incoming traffic is received by the current slave. If the receiving slave fails, another slave takes over the MAC address of the failed receiving slave.
 Prerequisite:
 Ethtool support in the base drivers for retrieving the
 speed of each slave.
mode=6 (balance-alb)
Adaptive load balancing: includes balance-tlb plus receive load balancing (rlb) for IPV4 traffic, and does not require any special switch support. The receive load balancing is achieved by ARP negotiation. The bonding driver intercepts the ARP Replies sent by the local system on their way out and overwrites the source hardware address with the unique hardware address of one of the slaves in the bond such that different peers use different hardware addresses for the server.

The most used are the first four mode types...

Also you can use multiple bond interface but for that you must load the bonding module as many as you need.
Presuming that you want two bond interface you must configure the /etc/modules.conf as follow:
 alias bond0 bonding
 options bond0 -o bond0 mode=0 miimon=100
 alias bond1 bonding
 options bond1 -o bond1 mode=1 miimon=100
Notes:
  • To restore your slaves MAC addresses, you need to detach them from the bond (`ifenslave -d bond0 eth0'). The bonding driver will then restore the MAC addresses that the slaves had before they were enslaved.
  • The bond MAC address will be the taken from its first slave device.
  • Promiscous mode: According to your bond type, when you put the bond interface in the promiscous mode it will propogates the setting to the slave devices as follow:
    • for mode=0,2,3 and 4 the promiscuous mode setting is propogated to all slaves.
    • for mode=1,5 and 6 the promiscuous mode setting is propogated only to the active slave.
      For balance-tlb mode the active slave is the slave currently receiving inbound traffic, for balance-alb mode the active slave is the slave used as a "primary." and for the active-backup, balance-tlb and balance-alb modes, when the active slave changes (e.g., due to a link failure), the promiscuous setting will be propogated to the new active slave.

Comments

Popular posts from this blog

Boot process hangs at dracut: Switching root

Environment Red Hat Enterprise Linux 6 Issue When server is booting the boot process hangs at  dracut: Switching root , and never displays anything else. Raw device-mapper: ioctl: 4.33.1-ioctl (2015-8-18) initialised: xx-xxxx@redhat.com udev: starting version 147 dracut: Starting plymouth daemon dracut: rd_NO_DM: removing DM RAID activation dracut: rd_NO_MD: removing MD RAID activation scsi0 : ata_piix scsi1 : ata_piix ata1: PATA max MWDMA2 cmd 0x1f0 ctl 0x3f6 bmdma 0xc120 irq 14 ata2: PATA max MWDMA2 cmd 0x170 ctl 0x376 bmdma 0xc128 irq 15 Refined TSC clocksource calibration: 2599.999 MHz. virtio-pci 0000:00:03.0: PCI INT A -> Link[LNKC] -> GSI 11 (level, high) -> IRQ 11 virtio-pci 0000:00:05.0: PCI INT A -> Link[LNKA] -> GSI 10 (level, high) -> IRQ 10 virtio-pci 0000:00:07.0: PCI INT A -> Link[LNKC] -> GSI 11 (level, high) -> IRQ 11 virtio-pci 0000:00:08.0: PCI INT A -> Link[LNKD] -> GSI 11 (level, high) -> IRQ 11 input: ImExPS/2 G...

Interpreting the output of lspci

On Linux, the lspci command lists all PCI devices connected to a host (a computer). Modern computers and PCI devices communicate with each other via PCI Express buses instead of the older Conventional PCI and PCI-X buses since the former buses offer many advantages such as higher throughput rates, smaller physical footprint and native hot plugging functionality. The high performance of the PCI Express bus has also led it to take over the role of other buses such as AGP ; it is also expected that SATA buses too will be replaced by PCI Express buses in the future as solid-state drives become faster and therefore demand higher throughputs from the bus they are attached to (see this article for more on this topic). As a first step, open a terminal and run lspci without any flags (note: lspci may show more information if executed with root privileges): lspci   This is the output I get on my laptop: 00:00.0 Host bridge: Intel Corporation Haswell-ULT DRA...

How to get the SAN environment information and statistics on AIX, HP-UX, Linux, Solaris, and Windows

How to get the SAN environment information and statistics on AIX, HP-UX, Linux, Solaris, and Windows Description NetBackup SAN Client is supported on the Linux , Solaris, Windows, HP-UX and AIX operating systems.  These environments provide the initiator device driver which can login to the SAN client media server and mount an pseudo   target device “ARCHIVE PYTHON” so that the backup or restore can be use the fiber transport (FT).  If there is an issue in the SAN environment, it is necessary to get the information/statistics from the SAN fabric for analysis.  The commands below can be used, on the respective operating system, to gather the necessary information. If the outputs show many or steadily increasing error counts, that indicates one or more issues with  the fabric  infrastructure. The issue(s) can be caused by cabling, SFP, san switch, DWDM, HBA or ISL and those components will need to be analyzed and...